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Microscopic origins of heliclinic phases in smectic liquid crystals

Jonathan J. Stott and Rolfe G. Petschek
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079

~Received 21 June 1999!

In a previous article@Phys. Rev. E60, 1799~1999!#, the authors considered a model Landau free energy that
explained the ferriclinic phases of chiral smectic liquid crystals as a series of short period helical modulations.
In this paper we begin with a physically more realistic, more microscopic interlayer free energy and show how
our previous work can be derived using only simple short-ranged interactions. We then discuss what additional
information this provides about the Landau coefficients used previously to construct the phase diagram for the
heliclinic phases of chiral smectic liquid crystals. Finally, we investigate a means for explicitly including
chirality in our model.@S1063-651X~99!02412-5#

PACS number~s!: 64.70.Md, 61.30.Cz
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I. INTRODUCTION

In smectic liquid crystals, the molecules self-assem
into periodic layered structures. By convention, the la
normal defines thez axis of the system. The molecules of th
liquid crystal are anisotropic which often leads to pr
nounced birefringence effects. For the systems we will c
sider, the molecules can be viewed as elongated ellipsoid
which case the long axis of the molecule coincides with
extraordinary index of refraction.

The orientation of the liquid crystal molecules is repr

sented by a unit vectornŴ called the director. By convention
the director is along the optical axis of the molecule. In t
smectic-A (Sm-A) phase, the director is parallel to the lay
normal. In the Sm-C phases, the director tilts and develops
component perpendicular to the layer normal. A tilt vectocW
can be used to represent this tilt. The tilt vector is co
strained to lay in the plane of the smectic layers and
magnitude is equal to the projection of the director onto
plane of the layers,

ucW u5uzŴ3nŴ u.

In the nonchiral Sm-C phase, the molecules, on average,
in the same direction throughout the sample. In a chiral m
terial, on the other hand, as one moves along thez axis the
tilt direction precesses about the layer normal with a per
much larger than the layer spacing. This is known as
Sm-C* phase. Because these molecules lack a center o
version, the Sm-C* phase usually has a spontaneous fer
electric polarization@1#. This polarization couples strongly t
an applied electric field which has applications in the ma
facture of optical devices.

Ferroclinic phases~also known as synclinic phases! are
liquid crystal phases where the average tilt vector points
the same direction from layer to layer~ignoring any rotations
due to the chirality!. In antiferroclinic~syndioclinic! phases,
on the other hand, the tilt vector changes direction betw
adjacent layerscW l 52cW l 11. Ferriclinic phases are the inte
mediate case where the tilt vector is neither parallel nor
tiparallel to the adjacent layers. In chiral materials, the
phases also possess spontaneous polarizations; chiral
clinics are necessarily ferroelectric. In a previous paper@2#,
PRE 601063-651X/99/60~6!/6826~5!/$15.00
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they are modeled for the ferriclinic smectic phases as a se
of short period helical modulations about the layer norma
the context of a Landau free energy. Such a heliclinic ph
is shown in Fig. 1. The tilt in each of five successive laye
is illustrated by drawing an arrow on a cone. The particu
phase illustrated is a chiral phase with a period of four latt
spacings. A variety of other phases can exist, depending
the period with which the director repeats, and the nature
the modulation within this period. From this, under certa
simplifying assumptions, we derived the phase diagram
characterized the various phases.

On doing so we found a number of ferrielectric phas
One bore a strong resemblance to the smectic-Cg phase. An-
other, which consisted of a helical modulation with a peri
of three times the layer spacing, may have been experim
tally observed by Mach and collaborators@3#. In addition,
our model predicts two other ferriclinc phases which do n
seem to correspond to any phases yet observed. Finally
demonstrated the importance of mode locking between
ferent Fourier modes in determining the phase diagram.

While the Landau free energy formulation we used is co
venient to work with, it is not always the most satisfyin
approach. In particular, the Landau free energy gives v
few clues as to the sign or magnitude of the various phen
enological coefficients except what can be inferred fro
physical arguments. Being a phenomenological theory,
indication is provided as to the physical origin of the vario
terms either. Finally, in our previous investigations@2#, while
we implicitly assumed the existence of chirality, we did n
treat it explicitly. In this paper we will attempt to remed
these shortcomings and to provide a more concrete fra
work for the heliclinic phases.

II. AN INTERLAYER FREE ENERGY

Our starting point for improving our understanding of th
heliclinic phases is an interlayer free energy with interactio

FIG. 1. Illustration of a heliclinic phase (q52p/4a in this ex-
ample!.
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between pairs of molecular tilts in smectic layers

F5
1

2 (
m,n

„Jn,m~cWn•cWm!1Jn,m8 ~cWn3cWm!•zŴ …

1
1

4 (
m,n

„Vn,m~cWn•cWm!2

1Vn,m8 ~cWn•cWn!~cWm•cWm!…1O~c6!. ~1!

Here, Jn,m contains the nonchiral interaction~e.g., steric
forces, van der Waals, elastic, dipole-dipole, etc.@4#! be-
tween molecules andJn,m8 contains the chiral interactions

The tilt vector for a given moleculen is given bycWn . Vn,m

andVn,m8 are the fourth-order interaction terms. We assu
that any chiral fourth-order terms are small enough that t
may be safely neglected. We also assume that the long-r
fourth-order terms (cW k•cW l)(cWn•cWm) with kÞ lÞn may also be
safely neglected. Finally we assume, as is commonly d
when modeling phase transitions, that the second-order te
vary with temperature while the fourth-order terms are te
perature independent.

Based on the symmetry of real systems, all the coup
terms must be translationally invariant. Further, only ter
invariant under the interchangen↔m can contribute to the
free energy, from which it immediately follows that

Jn,m5Jm,n ,

Jn,m8 52Jm,n8 ,
~2!

Vn,m5Vm,n ,

Vn,m8 5Vm,n8 .

After Fourier transforming the interlayer free energy~1!
and dropping the sixth-order terms, we find

F5
1

2 (
k

Jq~sW k•sW 2k!1Jq8~sW k3sW 2k!

1
1

4 (
k,k8,k9

~V2k2k91V2k2k8
8 !

3~sW k•sW k8!~sW k9•sW 2k2k82k9!. ~3!

As a consequence of Fourier transforming,sW k is now an
averagetilt vector. From Eq.~2!, Jq must be real after Fou
rier transforming, as mustV2k2k9 and V2k2k9 . The chiral
interactionJq8 , on the other hand, must be imaginary.

Since the interactions are expected to be short ranged
expand the various coefficients in terms of the layer spac
@or, equivalently, in terms of exp(iq)]. For the second-orde
interaction term, since the interactions are short ranged,
include terms up to next-nearest neighbors in the nonch
interactions@5,6#

Jq5J01J1 cos~q!1J2 cos~2q! ~4!

and up to nearest neighbor in the chiral interactions
e
y
ge

e
ms
-

g
s

we
g

e
al

Jq85 iJ18 sin~q!, ~5!

where J18 is now a real number. Finally, expanding th
fourth-order interaction terms up to nearest neighbors yie

V2k2k95V01V1 cos~k1k9! ~6!

and

V2k2k85V081V18 cos~k1k8!. ~7!

In order that the free energy of the system rem
bounded from below, we must have

V01V08.0, ~8!

V01V081V1.0, ~9!

and

V01V081V18.0. ~10!

In practice, it seems probable thatV0 andV08 will have ap-
proximately the same order of magnitude as they canno
rigorously distinguished from one another. Interlayer co
plings are expected to be significantly smaller than intrala
interactions, however, so we expect thatV0@V1'V18 .

Substituting ~4!–~7! into the interlayer free energy~3!
gives

F5
1

2 (
k

F ~J01J1 cos~q!1J2 cos~2q!#

3~sW k•sW 2k!1 iJ18 sin~q!~sW k3sW 2k!

1
1

4 (
k,k8,k9

@Ṽ01V1 cos~k1k9!1V18 cos~k1k8!#

3~sW k•sW k8!~sW k9•sW 2k2k82k9!, ~11!

whereṼ0[V01V08 . To bring out the essential features, w
first define a few new coefficients. Looking at the secon
order term in the interlayer free energy, we immediately s
that it can easily be simplified into

F (2)5(
k

akusW ku2, ~12!

where

ak[J01J1 cos~k!1 iJ18~sŴk3sŴ2k!sin~k!1J2 cos~2k!
~13!

and the unit vectorsŴk is defined assŴk5sW /usW u. Next, we
define the fourth-order coefficients:

bk52@Ṽ01cos~k!2V11V18#, ~14!

bk85Ṽ01V11cos~2k!V18 , ~15!

ck,k85Ṽ01V1 cos~k1k8!1V18 , ~16!
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ck,k8
8 5Ṽ01V11V18 cos~k1k8!, ~17!

ckml
5Ṽ01cos~2k!V11cos~2k!V18 . ~18!

This leaves us with a more manageable expression for
fourth-order terms in the interlayer free energy

F (4)5(
k

~bkusW ku41bk8usW k•sW ku2!

1(
k

(
uk8uÞuku

~ck,k8usW ku2usW k8u
21ck,k8

8 usW k•sW k8u
2!

1 (
ukml1u<ukml2u

ckml
~sW kml1

•sW kml1
!~sW kml1

•sW kml2
!

1 ( 8
k,k8,k9

dk,k8,k9~sW k•sW k8!~sW k9•sW 2k2k8k9!. ~19!

The final primed summation contains only those combi
tions of k, k8, andk9 that mix three distinct Fourier mode
~i.e., those terms not included elsewhere inF (4)). The sum
over kml1 and kml2, on the other hand, contains only tho
pairs of wavevectors that satisfy the mode lock condition

3kml12kml250, ~20!

3kml11kml252pn; n561,62, . . . . ~21!

The first condition~20! reflects the origin of the mode loc

terms as the (sW k•sW k)(sW k•sW 2k8) term of the free energy~3!.
The second mode lock condition~21! is analogous to the
condition for conserving momentum in an Umklapp proce
in a crystal. In an Umklapp process, electrons are able
‘‘hop’’ across from one zone boundary to another while s
conserving momentum to within a reciprocal lattice vect
Similarly, in heliclinic phases we are dealing with rotatio
in a plane, which are only specified up to a factor of 2p.
Thus, a combination of rotations which advances the ph
by 2p is allowed the same as if the wave vectors h
summed to zero. Since we are only keeping terms up
fourth order in the interlayer free energy, there are only t
pairs of modes that satisfy the mode lock conditions~20! and
~21!. Those pairs are (p/3,p), and (2p/3,2p). Again, since
rotations in a plane are always modulo 2p, the second pair is
equivalent to (2p/3,0). The pair (p/2,p/2) does not satisfy
the first mode lock condition~20!, but could also posses
interesting physics.

Substituting these new coefficients and adding toge
Eqs.~12! and~19! gives the final form for the interlayer fre
energy
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F5(
k

akusW ku21(
k

~bkusW ku41bk8usW k•sW ku2!

1(
k

(
uk8uÞuku

~ck,k8usW ku2usW k8u
21ck,k8

8 usW k•sW k8u
2!

1(
kml

ckml
~sW k•sW k!~sW k•sW 23k!

1 ( 8
k,k8,k9

dk,k8,k9~sW k•sW k8!~sW k9•sW 2k2k8k9!. ~22!

III. COMPARISON WITH LANDAU FREE ENERGY

Compare Eq.~22! with our previous formulation of the
Landau free energy in@2#

F5F01Fint ,

F05a1X21a3Z21b1X41b3Z41c138 X2Z2,
~23!

Fint52b39Z
4 sin2~2a!cos2~g!1c13cos2~a!X2Z2

2c1333XZ3 cos~a!A12sin2~2a!cos2~g!,

whereX is the magnitude of the ferroclinic order paramet
Z is the magnitude of the 2p/3 heliclinic order parameter
anda andg are angles related to the 2p/3 heliclinic order
parameter. Examining the two free energies term-by-te
one sees that the Landau coefficientsaq , bq8 , andcq,q8

8 are
given above by Eqs.~13!, ~14!, and ~16!, respectively. Fur-
ther, the Landau coefficientsbq9 and c1333 in @2# are given
above by Eqs.~15! and~18!. Both of the Landau coefficients
cq,q8
9 and cq,q8

- are given above by Eq.~17!. The d coeffi-
cients have no counterparts in the Landau free energy. Th
terms though, since they couple three different wave vec
are not likely to play a significant role in determining th
phase diagram of the system. These results are summa
in Table I.

IV. PHYSICS BEYOND THE LANDAU THEORY

Now that we have more physical expressions~13!–~18!
for the various Landau coefficients in@2#, we are able to
make several additional comments about their relative m

TABLE I. Equivalence between~phenomenological! Landau
coefficients and~interlayer! Landau-Ginzburg coefficients. Value
of k given are those appearing in the phenomenological Lan
theory.

Landau Landau-Ginzburg

a1 , a3 ak k50,2p/3
b1 , b3 bk k50,2p/3

b39 bk8 k52p/3
c13 ck,k8

8 k,k850,2p/3
c138 ck,k8 k,k850,2p/3

c1333 ckml
kml5(0,2p/3)
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nitudes and the relationships between them. Looking at
second-order coefficientak one immediately sees a possib
competition between nearest neighbor and next-nea
neighbor if J1 and J2 have different signs. It is this sam
competition that drives the phase transitions in the disc
phenomenological models of Rovsˇek, Čepič, and Žekš@5,6#.

J18 , though, also plays an important role in determini
the layer-by-layer structure of the system. As an odd fu
tion of q, theJ18 term causes the coefficientaq to distinguish
between modes with helicityq and modes with helicity
2q. This is significant because all the other interactions
the interlayer free energy are even functions ofq. While one
would naturally expect on physical grounds that the ch
term is responsible for breaking the degeneracy betweeq
and2q, this was not readily apparent in our previous La
dau free energy@2#. There, symmetry breaking betweenq
and2q had to be introduced byfiat.

Next, looking at the definitions~16!–~18! one sees tha
the Landau coefficientsc13, c138 , and c1333 are all positive
numbers. While this is of only minor importance in dete
mining the phase diagram, this too is a result that canno
obtained from the form of the Landau free energy alone.

Finally, looking at bk8 in Eq. ~15! one sees, given the
bounds on the various terms in Eqs.~8! and ~9!, that bk8 is
always positive. Consequently, the parameter cos(g) of Eq.
~23! is permitted to take on the values of zero and one@if bk8
were negative, cos(g) would be identically zero#. In our pre-
vious paper@2# we considered two sequences of phase tr
sitions since we were unable to determine the sign ofbk8 .
Starting from the interlayer free energy, we see that the s
ond, richer, sequence of phase transitions~reproduced in Fig.
2! is the correct sequence. This again is a result that ca
be derived from the Landau free energy formulation alon

V. CHIRALITY

Spontaneous polarization, as observed in all known fe
electric phases, can only occur in systems that lack a ce

FIG. 2. Phase diagram as calculated previously. Region I an
are the the isotropic (Sm-A) and ferroclinic (Sm-C) phases, re-
spectively. Region III is a chiral heliclinic phase, region IV is
planar heliclinic phase~similar to the Sm-Cg phase!, and region V
is a second chiral heliclinc phase. Dotted lines are the coordi
axes, solid lines are continuous transitions, heavy dashed line
discontinuous transitions.
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of inversion. In liquid crystals, this means that the molecu
are chiral. In a chiral system, as mentioned previously,
orientation of the liquid crystal rotates slowly througho
space. The formulation we have used for the interlayer f
energy, however, does not yet account for this. In this sec
we will outline the effects that chirality has on our model

At a microscopic level, chirality can be viewed as a laye
by-layer rotation of the coordinate system. To correctly a
count for this rotation, though, it is easier to work with th
complex field c instead of the usual Cartesian vectorssW
where

c l[sW l•xŴ1 isW l•yŴ .

Rotations ofsW by an angleQ between adjacent layers simp
changes the complex phase ofc

c l 115eiQc l ,

which is the chief virtue of this representation. Writing th
nonchiral free energy~1! in terms of c and Fourier trans-
forming, we now find

F5
1

2 (
k

@Jk~ckck* !2 iJk8~ckck* !#

1
1

4 (
k,k8,k9

~V2k2k91V2k2k8!

3ckc2k8
* ck9ck1k81k9

* . ~24!

In the above equation~24! and for the rest of this paper, w
will use the convention thatck* is the complex conjugate o
the Fourier transform@i.e., ck* 5(( lc le

ikl)* ].
If the chiral interactions~via J8) are small, then the chira

solutions should be equal to the nonchiral solutions p
some small chiral perturbation. Specifically, by calculati
the ck for the nonchiral case and then adding some cons
Q[2p/P to all the wave vectors in Eq.~24! we should be
able to find the new chiral solutions using perturbati
theory ~to first order!.

Upon doing so, however, it is apparent that the four
order term has only a weak dependence on the wave ve
Q since we expect intralayer interactions (Ṽ0) to be signifi-
cantly stronger than the layer-layer couplings (V1 andV18) in
the fourth-order terms. Therefore, this dependence is sm
and can safely be ignored. The remainingQ-dependent parts
of the free energy are

FQ5
1

2 (
k

~Jk1Q2 iJk1Q8 !uck1Qu2, ~25!

whereck is obtained by minimizing the free energy of th
nonchiral system. This portion of the free energy is eas
minimized with respect toQ, from which we find

(
k

S ]Jk1Q

]Q
2 i

]Jk1Q8

]Q D uck1Qu250. ~26!

As we demonstrated in our initial paper@2#, some of the
heliclinic phases are confined to theXZ plane and thus are
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achiral. Others, though, trace a helix along thez axis and are
thus manifestly chiral~e.g., they are asymmetric underz→
2z). If the system is in a achiral phase then]Jk1Q /]Q is an
odd function of Q and so we must have]Jk1Q /]Q
'Q(]2Jk1Q /]Q2uQ50). Similarly, since it is an even func
tion of Q, ]Jk1Q8 /]Q'const. These two expressions can
substituted back into Eq.~26! and the resulting equatio
solved forQ which yields

Q'

i(
k

uck1Qu2]Jk1Q8 /]Q

(
k

uck1Qu2]2Jk1Q /]Q2
U

Q50

. ~27!

This implies that the heliclinic state should have a pitch
the same order of magnitude as that of the ferroclinic st
As the second derivative ofJ cannot be predicted from th
properties of the ferroclinic phase, however, no quantita
predictions for the pitch can be made.

If, on the other hand, the system is in a chiral phase~spe-
cifically, phases III and V in Fig. 2!, the situation become
more complicated. Sinceck is not equivalent toc2k for
nonzerok, there is no reason to assume that(]J/]Q and
(]J8/]Q are the same atk and 2k. Therefore, there is no
reason to assume thatQ goes to zero asJ8 goes to zero. This
of course, stands to reason since as a chiral heliclinic ph
the system has a spontaneous ‘‘pitch’’ of its own. Therefo
f
e.

e

e,
,

we expect that this phase will have a chiral pitch rather lar
than the pitch of the ferroclinic phase and that the sign of t
pitch will be chosen by the sign of the chiralJ8 term.

VI. SUMMARY

In conclusion, we have shown that it is possible to co
struct the Landau free energy used in our initial paper@2#
starting from short-ranged interlayer interactions. Using
Landau-Ginzburg free energy, however, we are able to re
the various Landau coefficients to physical properties of
liquid crystal instead of leaving them as simple phenome
logical parameters. This also allows us to make much be
estimates of the sign and of the relative magnitude of
various coefficients than was possible from just the Land
free energy. Finally, we extended our model to include
effects of the natural chiral pitch. Our analysis of the intri
sic chirality is unsophisticated, but it nevertheless permits
to make rough estimates for the pitch in the achiral helicli
phases and to make some qualitative statements abou
effects of chirality in the chiral heliclinic phases.
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