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Microscopic origins of heliclinic phases in smectic liquid crystals
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In a previous articl¢Phys. Rev. B60, 1799(1999], the authors considered a model Landau free energy that
explained the ferriclinic phases of chiral smectic liquid crystals as a series of short period helical modulations.
In this paper we begin with a physically more realistic, more microscopic interlayer free energy and show how
our previous work can be derived using only simple short-ranged interactions. We then discuss what additional
information this provides about the Landau coefficients used previously to construct the phase diagram for the
heliclinic phases of chiral smectic liquid crystals. Finally, we investigate a means for explicitly including
chirality in our model[S1063-651X99)02412-3

PACS numbd(s): 64.70.Md, 61.30.Cz

[. INTRODUCTION they are modeled for the ferriclinic smectic phases as a series
of short period helical modulations about the layer normal in
In smectic liquid crystals, the molecules self-assemblghe context of a Landau free energy. Such a heliclinic phase
into periodic layered structures. By convention, the layers shown in Fig. 1. The tilt in each of five successive layers
normal defines the axis of the system. The molecules of the is illustrated by drawing an arrow on a cone. The particular
liquid crystal are anisotropic which often leads to pro-phase illustrated is a chiral phase with a period of four lattice
nounced birefringence effects. For the systems we will conspacings. A variety of other phases can exist, depending on
sider, the molecules can be viewed as elongated ellipsoids, thie period with which the director repeats, and the nature of
which case the long axis of the molecule coincides with thghe modulation within this period. From this, under certain
extraordinary index of refraction. simplifying assumptions, we derived the phase diagram and
The orientation of the liquid crystal molecules is repre-characterized the various phases.
% On doing so we found a number of ferrielectric phases.

sented by a unit vectar called the director. By convention, :
i : i X One bore a strong resemblance to the smeCtiphase. An-
the director is along the optical axis of the molecule. In the

smecticA (Sm-A) phase, the director is parallel to the layer other, which consisted of a helical modulation with a period
normal. In the SmE phases, the director tilts and develops aOf three times the layer spacing, may have been experimen-

i : 7 “tally observed by Mach and collaboratdi3]. In addition,
component perpendicular to the layer normal. A tilt ve@or oyr model predicts two other ferriclinc phases which do not
can be used to_ represent this tilt. The t||_t vector is CON-seem to correspond to any phases yet observed. Finally, we
strained to lay in the plane of the smectic layers and itgyemonstrated the importance of mode locking between dif-
magnitude is equal to the projection of the director onto th§erent Fourier modes in determining the phase diagram.
plane of the layers, While the Landau free energy formulation we used is con-
venient to work with, it is not always the most satisfying
approach. In particular, the Landau free energy gives very

. .. few clues as to the sign or magnitude of the various phenom-
In the nonchiral S phase, the molecules, on average, tIItenological coefficients except what can be inferred from

in the same direction throughout the sample. In a chiral ma-, ° - . .
terial, on the other hand, as one moves alongzhgis the physical arguments. Being a phenomenological theory, no

tilt direction precesses about the layer normal with a perio ndication is provided as to the physical origin of the various

much larger than the layer spacing. This is known as th erms either. Finally, in our previous investigatid2$, while

e implicitly assumed the existence of chirality, we did not
C* n- !
Sm-C* phase. Because these molecules lack a center of Neat it explicitly. In this paper we will attempt to remedy

i o* - . .
version, the S”C phasg usually hqs a spontaneous ferro these shortcomings and to provide a more concrete frame-
electric polarizatiori1]. This polarization couples strongly to

an applied electric field which has applications in the manuyvOrk for the heliclinic phases.

facture of optical devices. N Il. AN INTERLAYER FREE ENERGY
Ferroclinic phasegalso known as synclinic phaseare
liquid crystal phases where the average tilt vector points in Our starting point for improving our understanding of the
the same direction from layer to lay@gnoring any rotations heliclinic phases is an interlayer free energy with interactions
due to the chirality. In antiferroclinic(syndioclinig phases,
on the other hand, the tilt vector changes direction between
adjacent Iayer§/= —E/H. Ferriclinic phases are the inter-
mediate case where the tilt vector is neither parallel nor an-
. . . . | 1+1 1+2 1+3 l+4 1+5
tiparallel to the adjacent layers. In chiral materials, these

phases also possess spontaneous polarizations; chiral ferro-FIG. 1. lllustration of a heliclinic phaseq& 2/4a in this ex-
clinics are necessarily ferroelectric. In a previous pd@ér  ample.

6| =|ZxA].
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between pairs of molecular tilts in smectic layers Jé:i\]isin(q), (5)

where J; is now a real number. Finally, expanding the

1 - - - .
= — . +J X . . . . .
7 % (nm(CnCm) FInm(CnX Cm) - 2) fourth-order interaction terms up to nearest neighbors yields

l N N V,k,k//:VO‘FVlCOSk“F k”) (6)
+ 7 2 (Vom(CoCr)?
mn and
+Vr,1,m(6n'En)(em'ém))+o(c6)- (1) kafk’:V(,)_FVi COE{k+ k’)_ (7)
Here, J, , contains the nonchiral interactiofe.g., steric In order that the free energy of the system remain

forces, van der Waals, elastic, dipole-dipole, ¢#l) be-  pounded from below. we must have
tween molecules and), ;,, contains the chiral interactions.

The tilt vector for a given molecula is given byc,. Vy m Vot V>0, (8)
andV,, ., are the fourth-order interaction terms. We assume ,
that any chiral fourth-order terms are small enough that they Vot+Vo+V1>0, €)

may be safely neglected. We also assume that the Iong-ran%erz]d

fourth-order termsd, - ¢,)(C,- Cy,) With k%1% n may also be

safely neglected. Finally we assume, as is commonly done Vo+V§+V,>0. (10)

when modeling phase transitions, that the second-order terms

vary with temperature while the fourth-order terms are tem4n practice, it seems probable thdg and V{ will have ap-

perature independent. ~ proximately the same order of magnitude as they cannot be
Based on the symmetry of real systems, all the couplingigorously distinguished from one another. Interlayer cou-

terms must be translationally invariant. Further, only termspjings are expected to be significantly smaller than intralayer

invariant under the interchange—m can contribute to the jnteractions, however, so we expect thgs>V ~ V.

free energy, from which it immediately follows that Substituting (4)—(7) into the interlayer free energgB)
gives
Inm=Imns
1
I n==300 F=5 2 | (JotJ1cod0)+J,c0929)]
2
Vam=VYmn, X (0y o) +131 siN(@) (01X 7 )
Vom=Vmn- +% Z ) [Vo+V, cogk+Kk")+V} cogk+k')]
After Fourier transforming the interlayer free enerdy Ik

and dropping the sixth-order terms, we find X T ) (T T — i), (11)

WhereVOEV0+V5. To bring out the essential features, we
first define a few new coefficients. Looking at the second-
order term in the interlayer free energy, we immediately see

1 I - N
F=2 2> Jy(0 o)+ 30X o)
2 % q

1 / that it can easily be simplified into
+ Z 2 (V_k_k/r+V7k7k,) y p
k,k,,k"
. Fooy=2 alay? 12
X(Uk'Uk’)(a'k”‘a'fkfk’fk")- (3) @) Zk k| k| ( )
As a consequence of Fourier transforming, is now an Where
averagetilt vector. From Eq.(2), Jq must be real after Fou- L
rier transforming, as must_,_,» andV_,_,». The chiral a=Jo+J; cogk)+iJ (s Xs_y)sin(k) +J, cog 2k)
interactionJ(’q, on the other hand, must be imaginary. (13

Since the interactions are expected to be short ranged, we ) R
expand the various coefficients in terms of the layer spacin@gnd the unit vectoss, is defined as§k=5/|5|. Next, we
[or, equivalently, in terms of exf)]. For the second-order define the fourth-order coefficients:
interaction term, since the interactions are short ranged, we
include terms up to next-nearest neighbors in the nonchiral by=2[Vy+cogk)?V,+ V], (14
interactiony 5,6]

Jq=Jo+J; cogq) +J, cog 2q) (4) by =Vo+Vi+cog2k)Vy, (15

and up to nearest neighbor in the chiral interactions Ck = Vo+ Vg cogk+k')+V], (16)
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v / TABLE |. Equivalence betweeriphenomenological Landau
C, .,=Vot+V;+V;codk+k'), 1 By ! ) he
kik 0 ! 1 c0g ) (17 coefficients andinterlaye) Landau-Ginzburg coefficients. Values
of k given are those appearing in the phenomenological Landau
theory.
Ck |=V0+Cos(2k)V1+cos(2k)Vi. (18
m Landau Landau-Ginzburg
a,, az a, k=0,27/3
This leaves us with a more manageable expression for the b, bs by k=0,2m/3
fourth-order terms in the interlayer free energy by b, k=2m/3
C13 Crw kk'=0,2m/3
Cf’LS Ck,k’ k,k’=0,27'r/3
- ooz c c Kmi=(0,27/3
F= S (Bdad*+bilo o2 K= (02779
c 121212 o2 - - - -
% | \2\ (Cuwlodoelelow el F=> alo+ X (blo*+bilo o)
k| # |k K K
+ ; Ckml( O-kmll' O-kmll)(o-kmll. O-kaZ) + 2 E (Ck k’|&k|2| &k’ |2+ Cl: k’|(;-k' 5-k’|2)
|kmll g“<m|2| k ‘k"ilkl ’ !
+ 2 dew ok o) (T k). (19) +> ¢ (- )Tk T—31)
Kk’ K" = i

, I -
. . . . . + Ay i k(O o) (T T i) - (22)
The final primed summation contains only those combina- Kk’ K"

tions ofk, k’, andk” that mix three distinct Fourier modes

(i.e., those terms not included elsewhereFi)). The sum

over ky,; andkp,», on the other hand, contains only those

pairs of wavevectors that satisfy the mode lock conditions ~ Compare Eq(22) with our previous formulation of the
Landau free energy if2]

IIl. COMPARISON WITH LANDAU FREE ENERGY

3Kmi1—Kmi2=0, (20 F=Fo+Fin,
Fo=ay X2+ azZ%+ by X*+bZ%+ ¢ X272,
3km|l+km|2:277n; n=il,i2, - (21) (23)
Fint=— 042 siff(2a)cog( y) + C13c08 (o) X222
The first condition(20) reflects the origin of the mode lock —C1339XZ8 cog @) V1—sir?(2a)cos(y),

terms as thedy- o) (- o_y/) term of the free energ). _ _ N
The second mode lock conditiof21) is analogous to the WhereXis the magnitude of the ferroclinic order parameter,
condition for conserving momentum in an Umklapp proces IS the magnitude of the 2/3 heliclinic order parameter,
in a crystal. In an Umklapp process, electrons are able t§nd« andy are angles related to then23 heliclinic order
“hop” across from one zone boundary to another while still Parameter. Examining the two free energies term-by-term,
conserving momentum to within a reciprocal lattice vector.ON€ Sees that the Landau coefficieats by, an@! Cqq 1€
Similarly, in heliclinic phases we are dealing with rotations given above by Eqs(13), (14), and(16), respectively. Fur-
in a plane, which are only specified up to a factor of.2 ther, the Landau coefficients; and c,s33in [2] are given
Thus, a combination of rotations which advances the phas@bove by Eqs(15) and(18). Both of the Landau coefficients
by 27 is allowed the same as if the wave vectors hadc, , andcy,, are given above by Eq17). Thed coeffi-
summed to zero. Since we are only keeping terms up teients have no counterparts in the Landau free energy. These
fourth order in the interlayer free energy, there are only twaterms though, since they couple three different wave vectors
pairs of modes that satisfy the mode lock conditi2® and  are not likely to play a significant role in determining the
(21). Those pairs arerf/3,7), and (27/3,27). Again, since  phase diagram of the system. These results are summarized
rotations in a plane are always module 2the second pairis in Table I.
equivalent to (2r/3,0). The pair @/2,77/2) does not satisfy
the first mode lock conditior{20), but could also possess
interesting physics.

Substituting these new coefficients and adding together Now that we have more physical expressigh8)—(18)
Egs.(12) and(19) gives the final form for the interlayer free for the various Landau coefficients 2], we are able to
energy make several additional comments about their relative mag-

IV. PHYSICS BEYOND THE LANDAU THEORY
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of inversion. In liquid crystals, this means that the molecules
a3 are chiral. In a chiral system, as mentioned previously, the
orientation of the liquid crystal rotates slowly throughout
space. The formulation we have used for the interlayer free
IT I energy, however, does not yet account for this. In this section
we will outline the effects that chirality has on our model.

At a microscopic level, chirality can be viewed as a layer-
by-layer rotation of the coordinate system. To correctly ac-

4 count for this rotation, though, it is easier to work with the
complex field ¢ instead of the usual Cartesian vectars
111 \Y4 where

{/I|Eg'|')z+i5'|')7.

v

£
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i
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Rotations ofa by an angleQ between adjacent layers simply
FIG. 2. Phase diagram as calculated previously. Region | and 'bhanges the complex phase if

are the the isotropic (Sm) and ferroclinic (SmE) phases, re-

spectively. Region Il is a chiral heliclinic phase, region IV is a l/f|+1:ein/f| ,

planar heliclinic phasgsimilar to the Sme,, phasg, and region V

is a second chiral heliclinc phase. Dotted lines are the coordinateshich is the chief virtue of this representation. Writing the

axes, solid lines are continuous transitions, heavy dashed lines aronchiral free energyl) in terms of ¢y and Fourier trans-

discontinuous transitions. forming, we now find

nitudes and the relationships between them. Looking at the
second-order coefficiersty one immediately sees a possible
competition between nearest neighbor and next-nearest

1 .
F=3 Ek [Ik(hhic) =13 (et )]

neighbor if J; and J, have different signs. It is this same 1 2
competition that drives the phase transitions jn the discreet + 4 o (Vg +Vok—i)
phenomenological models of Raks Cepic, and Z2Kks[5,6]. o

Ji, though, also plays an important role in determining kawtk’lpk"¢:+k’+k”' (24)

the layer-by-layer structure of the system. As an odd func- _ _

tion of g, the J; term causes the coefficieay, to distinguish ~ In the above equatio®4) and for the rest of this paper, we
between modes with helicityy and modes with helicity Will use the convention thapy is the complex conjugate of
—q. This is significant because all the other interactions inthe Fourier transfornfii.e., ¢ = (=,4,e™")*].

the interlayer free energy are even functiongjovhile one If the chiral interactiongvia J") are small, then the chiral
would naturally expect on physical grounds that the chiralsolutions should be equal to the nonchiral solutions plus
term is responsible for breaking the degeneracy betvwpen some small chiral perturbation. Specifically, by calculating
and —q, this was not readily apparent in our previous Lan-the ¢, for the nonchiral case and then adding some constant
dau free energy2]. There, symmetry breaking betwegn Q=27/P to all the wave vectors in Eq24) we should be

and —q had to be introduced biat. able to find the new chiral solutions using perturbation
Next, looking at the definition$16)—(18) one sees that theory (to first ordey.
the Landau coefficients,3, c}5, andc,s3; are all positive Upon doing so, however, it is apparent that the fourth-

numbers. While this is of only minor importance in deter- order term has only a weak dependence on the wave vector
mining the phase diagram, this too is a result that cannot b since we expect intralayer interactionéf to be signifi-
obtained from the form of the Landau free energy alone. cantly stronger than the layer-layer couplinys @ndV;) in
Finally, looking atb, in Eq. (15) one sees, given the the fourth-order terms. Therefore, this dependence is small
bounds on the various terms in Ed8) and (9), thatby is  and can safely be ignored. The remain@@glependent parts
always positive. Consequently, the parameter gost Eq.  of the free energy are
(23) is permitted to take on the values of zero and fhé, 1
were negative, cosf would be identically zerp In our pre- _ - EY 2
vious pa%el[Z] wesgonsidered two sequ)(/ance]; of phapse tran- FQ_Z Zk (i IJk+Q)| l’llk+Q| ’ 29
sitions since we were unable to determine the sigm,of
Starting from the interlayer free energy, we see that the sedvhere ¢ is obtained by minimizing the free energy of the
ond, richer, sequence of phase transitimegroduced in Fig. nonchiral system. This portion of the free energy is easily
2) is the correct sequence. This again is a result that cannd@inimized with respect t@, from which we find
be derived from the Landau free energy formulation alone. ,
<3JK+Q kg
Qa0

Spontaneous polarization, as observed in all known ferri- As we demonstrated in our initial papg2], some of the
electric phases, can only occur in systems that lack a centéeliclinic phases are confined to tX& plane and thus are

>

>|'J/k+Q|2:0- (26)
V. CHIRALITY K
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achiral. Others, though, trace a helix along #rexis and are  we expect that this phase will have a chiral pitch rather larger
thus manifestly chirale.g., they are asymmetric undes than the pitch of the ferroclinic phase and that the sign of this
—2). If the system is in a achiral phase théh . o/dQ isan  pitch will be chosen by the sign of the chirdl term.

odd function of Q and so we must have)d,,q/dQ

~Q(d*Jy+ o/ 9Q?g-0). Similarly, since it is an even func- V1. SUMMARY

tion of Q, dJy. o/ 9Q~const. These two expressions can be _ o _
substituted back into Eq(26) and the resulting equation ~ In conclusion, we have shown that it is possible to con-
solved forQ which yields struct the Landau free energy used in our initial palggr

starting from short-ranged interlayer interactions. Using a
Landau-Ginzburg free energy, however, we are able to relate

'% |W+Q|25JI’<+Q/‘7Q the various Landau coefficients to physical properties of the
Q~ . (27) liquid crystal instead of leaving them as simple phenomeno-
> e 02023 o/ 9Q? logical parameters. This also allows us to make much better
k 0-0 estimates of the sign and of the relative magnitude of the

various coefficients than was possible from just the Landau
This implies that the heliclinic state should have a pitch offree energy. Finally, we extended our model to include the
the same order of magnitude as that of the ferroclinic stateeffects of the natural chiral pitch. Our analysis of the intrin-
As the second derivative af cannot be predicted from the sic chirality is unsophisticated, but it nevertheless permits us
properties of the ferroclinic phase, however, no quantitativeo make rough estimates for the pitch in the achiral heliclinic
predictions for the pitch can be made. phases and to make some qualitative statements about the

If, on the other hand, the system is in a chiral ph@ge-  effects of chirality in the chiral heliclinic phases.

cifically, phases Ill and V in Fig. 2 the situation becomes
more complicated. Sincé, is not equivalent toy_, for ACKNOWLEDGMENTS
nonzerok, there is no reason to assume tRatJ/9Q and
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